Package: trialr 0.1.5.9001
trialr: Clinical Trial Designs in 'rstan'
A collection of clinical trial designs and methods, implemented in 'rstan' and R, including: the Continual Reassessment Method by O'Quigley et al. (1990) <doi:10.2307/2531628>; EffTox by Thall & Cook (2004) <doi:10.1111/j.0006-341X.2004.00218.x>; the two-parameter logistic method of Neuenschwander, Branson & Sponer (2008) <doi:10.1002/sim.3230>; and the Augmented Binary method by Wason & Seaman (2013) <doi:10.1002/sim.5867>; and more. We provide functions to aid model-fitting and analysis. The 'rstan' implementations may also serve as a cookbook to anyone looking to extend or embellish these models. We hope that this package encourages the use of Bayesian methods in clinical trials. There is a preponderance of early phase trial designs because this is where Bayesian methods are used most. If there is a method you would like implemented, please get in touch.
Authors:
trialr_0.1.5.9001.tar.gz
trialr_0.1.5.9001.zip(r-4.5)trialr_0.1.5.9001.zip(r-4.4)trialr_0.1.5.9001.zip(r-4.3)
trialr_0.1.5.9001.tgz(r-4.4-x86_64)trialr_0.1.5.9001.tgz(r-4.4-arm64)trialr_0.1.5.9001.tgz(r-4.3-x86_64)trialr_0.1.5.9001.tgz(r-4.3-arm64)
trialr_0.1.5.9001.tar.gz(r-4.5-noble)trialr_0.1.5.9001.tar.gz(r-4.4-noble)
trialr.pdf |trialr.html✨
trialr/json (API)
NEWS
# Install 'trialr' in R: |
install.packages('trialr', repos = c('https://brockk.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/brockk/trialr/issues
Last updated 1 years agofrom:cbb4362893. Checks:OK: 2 NOTE: 7. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Oct 26 2024 |
R-4.5-win-x86_64 | NOTE | Oct 26 2024 |
R-4.5-linux-x86_64 | OK | Oct 26 2024 |
R-4.4-win-x86_64 | NOTE | Oct 26 2024 |
R-4.4-mac-x86_64 | NOTE | Oct 26 2024 |
R-4.4-mac-aarch64 | NOTE | Oct 26 2024 |
R-4.3-win-x86_64 | NOTE | Oct 26 2024 |
R-4.3-mac-x86_64 | NOTE | Oct 26 2024 |
R-4.3-mac-aarch64 | NOTE | Oct 26 2024 |
Exports:augbin_2t_1a_fitaugbin_fitbinary_prob_successcareful_escalationclosest_to_targetcrm_codified_dose_logisticcrm_dtpscrm_fitcrm_paramscrm_path_analysiscrm_prior_beliefsdf_parse_outcomesdose_finding_fitdose_finding_path_nodeeff_at_doseefftox_analysis_to_dfefftox_contour_plotefftox_dtpsefftox_dtps_to_dataframeefftox_fitefftox_get_toxefftox_parameters_demoefftox_paramsefftox_parse_outcomesefftox_path_analysisefftox_priorsefftox_simulateefftox_solve_pefftox_superiorityefftox_utilityefftox_utility_density_plotget_efftox_priorsn_at_doseparse_dose_finding_outcomesparse_eff_tox_dose_finding_outcomespeps2_get_datapeps2_processprior_predictive_augbin_2t_1aprob_successprob_tox_exceedsranBin2rlkjcorrspread_pathsstan_augbinstan_augbin_demostan_crmstan_efftoxstan_efftox_demostan_hierarchical_response_thallstan_nbgstan_peps2total_weight_at_dosetox_at_dosetrialr_simulateweights_at_dose
Dependencies:abindarrayhelpersbackportsBHbinomcallrcheckmateclicodacolorspacecpp11descdistributionaldplyrfansifarvergenericsggdistggplot2gluegridExtragtablegtoolsinlineisobandlabelinglatticelifecycleloomagrittrMASSMatrixmatrixStatsmgcvmunsellnlmenumDerivpillarpkgbuildpkgconfigposteriorprocessxpspurrrquadprogQuickJSRR6RColorBrewerRcppRcppEigenRcppParallelrlangrstanrstantoolsscalesStanHeadersstringistringrsvUnittensorAtibbletidybayestidyrtidyselectutf8vctrsviridisLitewithr
BEBOP in PePS2
Rendered fromA600-BEBOP.Rmd
usingknitr::rmarkdown
on Oct 26 2024.Last update: 2020-10-14
Started: 2020-10-08
CRM Case Study 1 - Levy et al (2006)
Rendered fromA250-LevyCaseStudy.Rmd
usingknitr::rmarkdown
on Oct 26 2024.Last update: 2020-10-15
Started: 2020-10-08
Continual Reassessment Method
Rendered fromA200-CRM.Rmd
usingknitr::rmarkdown
on Oct 26 2024.Last update: 2020-10-14
Started: 2020-10-08
Dose pathways with CRM
Rendered fromA220-CRM-pathways.Rmd
usingknitr::rmarkdown
on Oct 26 2024.Last update: 2020-10-15
Started: 2020-10-08
EffTox
Rendered fromA400-EffTox.Rmd
usingknitr::rmarkdown
on Oct 26 2024.Last update: 2020-10-14
Started: 2020-10-08
Hierarchical Bayesian Model for Binary Responses
Rendered fromA500-HierarchicalBayesianResponse.Rmd
usingknitr::rmarkdown
on Oct 26 2024.Last update: 2020-10-08
Started: 2020-10-08
Two-parameter logistic model for dose-finding by Neuenschwander, Branson & Gsponer
Rendered fromA300-NeuenschwanderBransonGsponer.Rmd
usingknitr::rmarkdown
on Oct 26 2024.Last update: 2020-10-14
Started: 2020-10-09
Time-to-Event Continual Reassessment Method
Rendered fromA260-TITE-CRM.Rmd
usingknitr::rmarkdown
on Oct 26 2024.Last update: 2020-10-15
Started: 2020-10-08
Visualisation with CRM
Rendered fromA210-CRM-visualisation.Rmd
usingknitr::rmarkdown
on Oct 26 2024.Last update: 2020-10-15
Started: 2020-10-08